Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 34(2): 367-378, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38073315

RESUMEN

In this study we sought to elucidate the therapeutic effects of fenchone on constipation-predominant irritable bowel syndrome (IBS-C) and the underlying mechanisms. An IBS-C model was established in rats by administration of ice water by gavage for 14 days. Fenchone increased the reduced body weight, number of fecal pellets, fecal moisture, and intestinal transit rate, and decreased the enhanced visceral hypersensitivity in the rat model of IBS-C. In addition, fenchone increased the serum content of excitatory neurotransmitters and decreased the serum content of inhibitory neurotransmitters in the IBS-C rat model. Meanwhile, western blot and immunofluorescence experiments indicated that fenchone increased the expressions of SCF and c-Kit. Furthermore, compared with the IBS-C model group, fenchone increased the relative abundance of Lactobacillus, Blautia, Allobaculum, Subdoligranulum, and Ruminococcaceae_UCG-008, and reduced the relative abundance of Bacteroides, Enterococcus, Alistipes, and Escherichia-Shigella on the genus level. Overall, fenchone ameliorates IBS-C via modulation of the SCF/c-Kit pathway and gut microbiota, and could therefore serve as a novel drug candidate against IBS-C.


Asunto(s)
Canfanos , Microbioma Gastrointestinal , Síndrome del Colon Irritable , Norbornanos , Ratas , Animales , Síndrome del Colon Irritable/tratamiento farmacológico , Estreñimiento/tratamiento farmacológico , Neurotransmisores/uso terapéutico
2.
ACS Appl Mater Interfaces ; 15(9): 11787-11801, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36802380

RESUMEN

Although the application of nanozymes has been widely studied, it is still a huge challenge to develop highly active and multifunctional nanozyme catalysts with a wider application prospect. Co3O4/CoFe2O4 hollow nanocubes (HNCs) with oxygen vacancies were proposed in this study, which had a porous oxide heterostructure with CoFe2O4 as the core and Co3O4 as the shell. The Co3O4/CoFe2O4 HNCs had three enzyme activities: peroxidase-like, oxidase-like, and catalase-like. Combining XPS depth profiling with density functional theory (DFT), the catalytic mechanism of peroxidase-like activity was explored in depth, which was mainly originated from ·OH produced by the synergistic effect between the outer oxygen and inner oxygen and electron transfer between Co and Fe. A colorimetry/smartphone dual sensing platform was designed based on the peroxidase-like activity. Especially, a multifunctional intelligent sensing platform based on deep learning-YOLO v3 algorithm-assisted smartphone was constructed to realize real-time and rapid in situ detection of l-cysteine, norfloxacin, and zearalenone. Surprisingly, the detection limit of norfloxacin was low at 0.015 µM, which was better than that of the newly published detection method in the field of nanozymes. Meanwhile, the detection mechanism of l-cysteine and norfloxacin was successfully investigated by in situ FTIR. In fact, it also showed outstanding applications in detecting l-cysteine in the food environment and norfloxacin in drugs. Furthermore, Co3O4/CoFe2O4 HNCs also could degrade 99.24% of rhodamine B, along with good reusability even after 10-cycle runs. Therefore, this work provided an in-depth understanding of the synergistic effect between the outer and inner oxygen in the reaction mechanism and an efficient method for establishing a deep-learning-assisted intelligent detection platform. In addition, this research also offered a good guideline for the further development and construction of nanozyme catalysts with multienzyme activities and multifunctional applications.


Asunto(s)
Aprendizaje Profundo , Oxígeno , Oxidación-Reducción , Oxígeno/química , Cisteína , Norfloxacino , Teléfono Inteligente , Peroxidasa/química , Colorimetría/métodos , Peróxido de Hidrógeno
3.
Plant Biotechnol J ; 21(3): 621-634, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36495424

RESUMEN

More than half of the world's food is provided by cereals, as humans obtain >60% of daily calories from grains. Producing more carbohydrates is always the final target of crop cultivation. The carbohydrate partitioning pathway directly affects grain yield, but the molecular mechanisms and biological functions are poorly understood, including rice (Oryza sativa L.), one of the most important food sources. Here, we reported a prolonged grain filling duration mutant 1 (gfd1), exhibiting a long grain-filling duration, less grain number per panicle and bigger grain size without changing grain weight. Map-based cloning and molecular biological analyses revealed that GFD1 encoded a MATE transporter and expressed high in vascular tissues of the stem, spikelet hulls and rachilla, but low in the leaf, controlling carbohydrate partitioning in the stem and grain but not in the leaf. GFD1 protein was partially localized on the plasma membrane and in the Golgi apparatus, and was finally verified to interact with two sugar transporters, OsSWEET4 and OsSUT2. Genetic analyses showed that GFD1 might control grain-filling duration through OsSWEET4, adjust grain size with OsSUT2 and synergistically modulate grain number per panicle with both OsSUT2 and OsSWEET4. Together, our work proved that the three transporters, which are all initially classified in the major facilitator superfamily family, could control starch storage in both the primary sink (grain) and temporary sink (stem), and affect carbohydrate partitioning in the whole plant through physical interaction, giving a new vision of sugar transporter interactome and providing a tool for rice yield improvement.


Asunto(s)
Grano Comestible , Oryza , Proteínas de Plantas , Humanos , Grano Comestible/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Almidón/metabolismo , Azúcares/metabolismo
4.
Front Plant Sci ; 13: 1044790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340409

RESUMEN

Photoperiod is acknowledged as a crucial environmental factor for plant flowering. According to different responses to photoperiod, plants were divided into short-day plants (SDPs), long-day plants (LDPs), and day-neutral plants (DNPs). The day length measurement system of SDPs is different from LDPs. Many SDPs, such as rice, have a critical threshold for day length (CDL) and can even detect changes of 15 minutes for flowering decisions. Over the last 20 years, molecular mechanisms of flowering time in SDP rice and LDP Arabidopsis have gradually clarified, which offers a chance to elucidate the differences in day length measurement between the two types of plants. In Arabidopsis, CO is a pivotal hub in integrating numerous internal and external signals for inducing photoperiodic flowering. By contrast, Hd1 in rice, the homolog of CO, promotes and prevents flowering under SD and LD, respectively. Subsequently, numerous dual function regulators, such as phytochromes, Ghd7, DHT8, OsPRR37, OsGI, OsLHY, and OsELF3, were gradually identified. This review assesses the relationship among these regulators and a proposed regulatory framework for the reversible mechanism, which will deepen our understanding of the CDL regulation mechanism and the negative response to photoperiod between SDPs and LDPs.

5.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232465

RESUMEN

As an important agronomic trait in rice (Oryza sativa), moderate leaf rolling helps to maintain the erectness of leaves and minimize shadowing between leaves, leading to improved photosynthetic efficiency and grain yield. However, the molecular mechanisms underlying rice leaf rolling still need to be elucidated. Here, we isolated a rice mutant, rl89, showing adaxially rolled leaf phenotype due to decreased number and size of bulliform cells. We confirmed that the rl89 phenotypes were caused by a single nucleotide substitution in OsDRB2 (LOC_Os10g33970) gene encoding DOUBLE-STRANDED RNA-BINDING2. This gene was constitutively expressed, and its encoded protein was localized to both nucleus and cytoplasm. Yeast two-hybrid assay showed that OsDRB2 could interact with DICER-LIKE1 (DCL1) and OsDRB1-2 respectively. qRT-PCR analysis of 29 related genes suggested that defects of the OsDRB2-miR166-OsHBs pathway could play an important role in formation of the rolled leaf phenotype of rl89, in which OsDRB2 mutation reduced miR166 accumulation, resulting in elevated expressions of the class III homeodomain-leucine zipper genes (such as OsHB1, 3 and 5) involved in leaf polarity and/or morphology development. Moreover, OsDRB2 mutation also reduced accumulation of miR160, miR319, miR390, and miR396, which could cause the abnormal leaf development in rl89 by regulating expressions of their target genes related to leaf development.


Asunto(s)
MicroARNs , Oryza , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Mutación , Nucleótidos/metabolismo , Oryza/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , ARN Bicatenario/metabolismo
6.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742907

RESUMEN

The circadian clock and histone modifications could form a feedback loop in Arabidopsis; whether a similar regulatory mechanism exists in rice is still unknown. Previously, we reported that SDG724 and OsLHY are two rice heading date regulators in rice. SDG724 encodes a histone H3K36 methyltransferase, and OsLHY is a vital circadian rhythm transcription factor. Both could be involved in transcription regulatory mechanisms and could affect gene expression in various pathways. To explore the crosstalk between the circadian clock and histone methylation in rice, we studied the relationship between OsLHY and SDG724 via the transcriptome analysis of their single and double mutants, oslhy, sdg724, and oslhysdg724. Screening of overlapped DEGs and KEGG pathways between OsLHY and SDG724 revealed that they could control many overlapped pathways indirectly. Furthermore, we identified three candidate targets (OsGI, OsCCT38, and OsPRR95) of OsLHY and one candidate target (OsCRY1a) of SDG724 in the clock pathway. Our results showed a regulatory relationship between OsLHY and SDG724, which paved the way for revealing the interaction between the circadian clock and histone H3K36 methylation.


Asunto(s)
Arabidopsis , Relojes Circadianos , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Histona Metiltransferasas , Histonas/genética , Histonas/metabolismo , Metilación , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética
7.
Int J Mol Sci ; 23(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35628595

RESUMEN

Protoporphyrinogen IX (Protogen IX) oxidase (PPO) catalyzes the oxidation of Protogen IX to Proto IX. PPO is also the target site for diphenyl ether-type herbicides. In plants, there are two PPO encoding genes, PPO1 and PPO2. To date, no PPO gene or mutant has been characterized in monocotyledonous plants. In this study, we isolated a spotted and rolled leaf (sprl1) mutant in rice (Oryza sativa). The spotted leaf phenotype was sensitive to high light intensity and low temperature, but the rolled leaf phenotype was insensitive. We confirmed that the sprl1 phenotypes were caused by a single nucleotide substitution in the OsPPO1 (LOC_Os01g18320) gene. This gene is constitutively expressed, and its encoded product is localized to the chloroplast. The sprl1 mutant accumulated excess Proto(gen) IX and reactive oxygen species (ROS), resulting in necrotic lesions. The expressions of 26 genes associated with tetrapyrrole biosynthesis, photosynthesis, ROS accumulation, and rolled leaf were significantly altered in sprl1, demonstrating that these expression changes were coincident with the mutant phenotypes. Importantly, OsPPO1-overexpression transgenic plants were resistant to the herbicides oxyfluorfen and acifluorfen under field conditions, while having no distinct influence on plant growth and grain yield. These finding indicate that the OsPPO1 gene has the potential to engineer herbicide resistance in rice.


Asunto(s)
Herbicidas , Oryza , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Mutación , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Protoporfirinógeno-Oxidasa/genética , Protoporfirinógeno-Oxidasa/metabolismo , Especies Reactivas de Oxígeno
8.
Rice (N Y) ; 14(1): 95, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34822039

RESUMEN

BACKGROUND: Mechanical strength is a crucial agronomic trait in rice (Oryza sativa), and brittle mutants are thought suitable materials to investigate the mechanism of cell wall formation. So far, almost all brittle mutants are recessive, and most of them are defected in multiple morphologies and/or grain yield, limiting their application in hybrid breeding and in rice straw recycling. RESULTS: We identified a semi-dominant brittle mutant Brittle culm19 (Bc19) isolated from the japonica variety Nipponbare through chemical mutagenesis. The mutant showed the same apparent morphologies and grain yield to the wild type plant except for its weak mechanical strength. Its development of secondary cell wall in sclerenchyma cells was affected, along with reduced contents of cellulose, hemicellulose, lignin and sugars in culms and leaves. Positional cloning suggested that the Bc19 gene was allelic to OsCESA4, encoding one of the cellulose synthase A (CESA) catalytic subunits. In this mutant, a C-to-T substitution occurred in the coding sequence of BC19, causing the P507S missense mutation in its encoded product, which was located in the second cytoplasmic region of the OsCESA4 protein. Furthermore, introducing mutant gene Bc19 into the wild-type plant resulted in brittle plants, confirming that the P507S point mutation in OsCESA4 protein was responsible for the semi-dominant brittle phenotype of Bc19 mutant. Reverse correlation was revealed between cellulose contents and expression levels of mutant gene Bc19 among the homozygous mutant, the hybrid F1 plant, and the Bc19 overexpression transgenic plants, implying that gene Bc19 might affect cellulose synthesis in a dosage-dependent manner. CONCLUSIONS: Bc19, a semi-dominant brittle mutant allele of gene OsCESA4, was identified using map-based cloning approach. The mutated protein of Bc19 possessing the P507S missense mutation behaved in a dosage-dependent semi-dominant manner. Unique brittle effect on phenotype and semi-dominant genetic quality of gene Bc19 indicated its potential application in grain-straw dual-purpose hybrid rice breeding.

9.
Rice (N Y) ; 14(1): 50, 2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34089406

RESUMEN

BACKGROUND: Tetrapyrroles play indispensable roles in various biological processes. In higher plants, glutamate 1-semialdehyde 2,1-aminomutase (GSAM) converts glutamate 1-semialdehyde (GSA) to 5-aminolevulinic acid (ALA), which is the rate-limiting step of tetrapyrrole biosynthesis. Up to now, GSAM genes have been successively identified from many species. Besides, it was found that GSAM could form a dimeric protein with itself by x-ray crystallography. However, no mutant of GSAM has been identified in monocotyledonous plants, and no experiment on interaction of GSAM protein with itself has been reported so far. RESULT: We isolated a yellow leaf mutant, ys53, in rice (Oryza sativa). The mutant showed decreased photosynthetic pigment contents, suppressed chloroplast development, and reduced photosynthetic capacity. In consequence, its major agronomic traits were significantly affected. Map-based cloning revealed that the candidate gene was LOC_Os08g41990 encoding GSAM protein. In ys53 mutant, a single nucleotide substitution in this gene caused an amino acid change in the encoded protein, so its ALA-synthesis ability was significantly reduced and GSA was massively accumulated. Complementation assays suggested the mutant phenotype of ys53 could be rescued by introducing wild-type OsGSAM gene, confirming that the point mutation in OsGSAM is the cause of the mutant phenotype. OsGSAM is mainly expressed in green tissues, and its encoded protein is localized to chloroplast. qRT-PCR analysis indicated that the mutation of OsGSAM not only affected the expressions of tetrapyrrole biosynthetic genes, but also influenced those of photosynthetic genes in rice. In addition, the yeast two-hybrid experiment showed that OsGSAM protein could interact with itself, which could largely depend on the two specific regions containing the 81th-160th and the 321th-400th amino acid residues at its N- and C-terminals, respectively. CONCLUSIONS: We successfully characterized rice GSAM gene by a yellow leaf mutant and map-based cloning approach. Meanwhile, we verified that OsGSAM protein could interact with itself mainly by means of the two specific regions of amino acid residues at its N- and C-terminals, respectively.

10.
Plant Biotechnol J ; 19(8): 1644-1657, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33740293

RESUMEN

Circadian clock, an endogenous time-setting mechanism, allows plants to adapt to unstable photoperiod conditions and induces flowering with proper timing. In Arabidopsis, the central clock oscillator was formed by a series of interlocked transcriptional feedback loops, but little is known in rice so far. By MutMap technique, we identified the candidate gene OsLHY from a later flowering mutant lem1 and further confirmed it through genetic complementation, RNA interference knockdown, and CRISPR/Cas9-knockout. Global transcriptome profiling and expression analyses revealed that OsLHY might be a vital circadian rhythm component. Interestingly, oslhy flowered later under ≥12 h day length but headed earlier under ≤11 h day length. qRT-PCR results exhibited that OsLHY might function through OsGI-Hd1 pathway. Subsequent one-hybrid assays in yeast, DNA affinity purification qPCR, and electrophoretic mobility shift assays confirmed OsLHY could directly bind to the CBS element in OsGI promoter. Moreover, the critical day length (CDL) for function reversal of OsLHY in oslhy (11-12 h) was prolonged in the double mutant oslhy osgi (about 13.5 h), indicating that the CDL set by OsLHY was OsGI dependent. Additionally, the dual function of OsLHY entirely relied on Hd1, as the double mutant oslhy hd1 showed the same heading date with hd1 under about 11.5, 13.5, and 14 h day lengths. Together, OsLHY could fine-tune the CDL by directly regulating OsGI, and Hd1 acts as the final effector of CDL downstream of OsLHY. Our study illustrates a new regulatory mechanism between the circadian clock and photoperiodic flowering.


Asunto(s)
Oryza , Fotoperiodo , Ritmo Circadiano/genética , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Int J Mol Sci ; 22(1)2020 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-33375756

RESUMEN

The iron-sulfur subunit (SDH2) of succinate dehydrogenase plays a key role in electron transport in plant mitochondria. However, it is yet unknown whether SDH2 genes are involved in leaf senescence and yield formation. In this study, we isolated a late premature senescence mutant, lps1, in rice (Oryza sativa). The mutant leaves exhibited brown spots at late tillering stage and wilted at the late grain-filling stage and mature stage. In its premature senescence leaves, photosynthetic pigment contents and net photosynthetic rate were reduced; chloroplasts and mitochondria were degraded. Meanwhile, lps1 displayed small panicles, low seed-setting rate and dramatically reduced grain yield. Gene cloning and complementation analysis suggested that the causal gene for the mutant phenotype was OsSDH2-1 (LOC_Os08g02640), in which single nucleotide mutation resulted in an amino acid substitution in the encoded protein. OsSDH2-1 gene was expressed in all organs tested, with higher expression in leaves, root tips, ovary and anthers. OsSDH2-1 protein was targeted to mitochondria. Furthermore, reactive oxygen species (ROS), mainly H2O2, was excessively accumulated in leaves and young panicles of lps1, which could cause premature leaf senescence and affect panicle development and pollen function. Taken together, OsSDH2-1 plays a crucial role in leaf senescence and yield formation in rice.


Asunto(s)
Envejecimiento/genética , Proteínas Hierro-Azufre/genética , Oryza/genética , Desarrollo de la Planta/genética , Hojas de la Planta/genética , Subunidades de Proteína/genética , Succinato Deshidrogenasa/genética , Cloroplastos/ultraestructura , Grano Comestible , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas Hierro-Azufre/metabolismo , Mutación , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fenotipo , Fotosíntesis/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Subunidades de Proteína/metabolismo , Carácter Cuantitativo Heredable , Especies Reactivas de Oxígeno/metabolismo , Reproducción , Succinato Deshidrogenasa/metabolismo
12.
BMC Plant Biol ; 20(1): 345, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698774

RESUMEN

BACKGROUND: Calvin cycle plays a crucial role in carbon fixation which provides the precursors of organic macromolecules for plant growth and development. Currently, no gene involved in Calvin cycle has been identified in monocotyledonous plants through mutant or/and map-based cloning approach. RESULTS: Here, we isolated a low-tillering mutant, c6635, in rice (Oryza sativa). The mutant displayed light green leaves and intensely declined pigment contents and photosynthetic capacity at early growth stage. Moreover, its individual plant showed a much smaller size, and most individuals produced only two tillers. At mature stage, its productive panicles, grain number and seed setting rate were significantly decreased, which lead to a sharp reduction of the grain yield. We confirmed that a single nucleotide mutation in LOC_Os04g16680 gene encoding sedoheptulose 1,7-bisphosphatase (SBPase) involved in Calvin cycle was responsible for the mutant phenotype of c6635 through map-based cloning, MutMap analysis and complementation experiments. Sequence analysis suggested that the point mutation caused an amino acid change from Gly-364 to Asp at the C-terminal of SBPase. In addition, OsSBPase gene was mainly expressed in leaf, and the encoded protein was located in chloroplast. The mutation of OsSBPase could significantly affect expression levels of some key genes involved in Calvin cycle. CONCLUSIONS: We successfully identified a SBPase gene in monocotyledonous plants. Meanwhile, we demonstrated that a single nucleotide substitution at the 3'-end of this gene severely affects plant growth and grain yield, implying that the Gly-364 at the C-terminal of SBPase could play an important role in SBPase function in rice.


Asunto(s)
Mutación , Oryza/crecimiento & desarrollo , Oryza/genética , Monoéster Fosfórico Hidrolasas/genética , Fotosíntesis/genética , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Monoéster Fosfórico Hidrolasas/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantones/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Almidón/genética , Almidón/metabolismo
13.
BMC Plant Biol ; 19(1): 456, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664904

RESUMEN

BACKGROUND: Phytyl residues are the common side chains of chlorophyll (Chl) and tocopherols. Geranylgeranyl reductase (GGR), which is encoded by CHLP gene, is responsible for phytyl biosynthesis. The light-harvesting like protein LIL3 was suggested to be required for stability of GGR and protochlorophyllide oxidoreductase in Arabidopsis. RESULTS: In this study, we isolated a yellow-green leaf mutant, 637ys, in rice (Oryza sativa). The mutant accumulated majority of Chls with unsaturated geranylgeraniol side chains and displayed a yellow-green leaf phenotype through the whole growth period. The development of chloroplasts was suppressed, and the major agronomic traits, especially No. of productive panicles per plant and of spikelets per panicle, dramatically decreased in 637ys. Besides, the mutant exhibited to be sensitive to light intensity and deficiency of tocopherols without obvious alteration in tocotrienols in leaves and grains. Map-based cloning and complementation experiment demonstrated that a point mutation on the OsLIL3 gene accounted for the mutant phenotype of 637ys. OsLIL3 is mainly expressed in green tissues, and its encoded protein is targeted to the chloroplast. Furthermore, the 637ys 502ys (lil3 chlp) double mutant exclusively accumulated geranylgeranyl Chl and exhibited lethality at the three-leaf stage. CONCLUSIONS: We identified the OsLIL3 gene through a map-based cloning approach. Meanwhile, we demonstrated that OsLIL3 is of extreme importance to the function of OsGGR, and that the complete replacement of phytyl side chain of chlorophyll by geranylgeranyl chain could be fatal to plant survival in rice.


Asunto(s)
Proteínas de Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Oxidorreductasas/genética , Fenotipo , Proteínas de Plantas/genética , Proteínas de Cloroplastos/metabolismo , Longevidad/genética , Mutación , Oryza/metabolismo , Oxidorreductasas/metabolismo , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo
14.
Proc Natl Acad Sci U S A ; 116(37): 18717-18722, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451662

RESUMEN

The contradiction between "high yielding" and "early maturing" hampers further improvement of annual rice yield. Here we report the positional cloning of a major maturity duration regulatory gene, Early flowering-completely dominant (Ef-cd), and demonstrate that natural variation in Ef-cd could be used to overcome the above contradictory. The Ef-cd locus gives rise to a long noncoding RNA (lncRNA) antisense transcript overlapping the OsSOC1 gene. Ef-cd lncRNA expression positively correlates with the expression of OsSOC1 and H3K36me3 deposition. Field test comparisons of early maturing Ef-cd near-isogenic lines with their wild types as well as of the derivative early maturing hybrids with their wild-type hybrids conducted under different latitudes determined that the early maturing Ef-cd allele shortens maturity duration (ranging from 7 to 20 d) without a concomitant yield penalty. Ef-cd facilitates nitrogen utilization and also improves the photosynthesis rate. Analysis of 1,439 elite hybrid rice varieties revealed that the 16 homozygotes and 299 heterozygotes possessing Ef-cd matured significantly earlier. Therefore, Ef-cd could be a vital contributor of elite early maturing hybrid varieties in balancing grain yield with maturity duration.


Asunto(s)
Grano Comestible/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Sitios de Carácter Cuantitativo , ARN Largo no Codificante/metabolismo , Producción de Cultivos , Flores , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Factores de Tiempo
15.
Plant Sci ; 280: 321-329, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30824011

RESUMEN

Cysteine functions not only as an amino acid in proteins but also as a precursor for a large number of essential biomolecules. Cysteine is synthesized via the incorporation of sulfide to O-acetylserine under the catalysis of O-acetylserine(thiol)lyase (OASTL). In dicotyledonous Arabidopsis, nine OASTL genes have been reported. However, in their null mutants, only the mutant of CS26 encoding S-sulfocysteine synthase showed the visible phenotypic changes, displaying significantly small plants and pale-green leaves under long-day condition but not short-day condition. Up to now, no OASTL gene or mutant has been identified in monocotyledon. In this study, we isolated a green-revertible albino mutant gra78 in rice (Oryza sativa). Its albino phenotype at the early seedling stage was sensitive to temperature but independent of photoperiod. Map-based cloning revealed that candidate gene LOC_Os01g59920 of GRA78 encodes a putative S-sulfocysteine synthase showing significant similarity with Arabidopsis CS26. Complementation experiment confirmed that mutation in LOC_Os01g59920 accounted for the mutant phenotype of gra78. GRA78 is constitutively expressed in all tissues and its encoded protein is targeted to the chloroplast. In addition, qRT-PCR suggested that expression levels of four OASTL homolog genes and five photosynthetic genes were remarkably down-regulated.


Asunto(s)
Liasas/metabolismo , Oryza/enzimología , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Liasas/genética , Liasas/ultraestructura , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/ultraestructura , Fenotipo , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/ultraestructura
16.
Plant Cell Physiol ; 59(9): 1905-1917, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29893915

RESUMEN

Plant isoprenoids are dependent on two independent pathways, the cytosolic mevalonate (MVA) pathway and the plastidic methylerythritol phosphate (MEP) pathway. IspE is one of seven known enzymes in the MEP pathway. Currently, no IspE gene has been identified in rice. In addition, no virescent mutants have been reported to result from a gene mutation affecting the MEP pathway. In this study, we isolated a green-revertible yellow leaf mutant gry340 in rice. The mutant exhibited a reduced level of photosynthetic pigments, and an arrested development of chloroplasts and mitochondria in its yellow leaves. Map-based cloning revealed a missense mutation in OsIspE (LOC_Os01g58790) in gry340 mutant plants. OsIspE is constitutively expressed in all tissues, and its encoded protein is targeted to the chloroplast. Further, the mutant phenotype of gry340 was rescued by introduction of the wild-type gene. Therefore, we have successfully identified an IspE gene in monocotyledons via map-based cloning, and confirmed that the green-revertible yellow leaf phenotype of gry340 does result from a single nucleotide mutation in the IspE gene. In addition, the ispE ispF double mutant displayed an etiolation lethal phenotype, indicating that the isoprenoid precursors from the cytosol cannot efficiently compensate for the deficiency of the MEP pathway in rice chloroplasts. Furthermore, real-time quantitative reverse transcription-PCR suggested that this functional defect in OsIspE affected the expression of not only other MEP pathway genes but also that of MVA pathway genes, photosynthetic genes and mitochondrial genes.


Asunto(s)
Cloroplastos/metabolismo , Oryza/genética , Hojas de la Planta/metabolismo , Polimorfismo de Nucleótido Simple , Terpenos/metabolismo , Secuencia de Bases , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Mitocondrias/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Filogenia , Proteínas de Plantas/metabolismo
17.
Plant Mol Biol ; 96(1-2): 5-16, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29143298

RESUMEN

KEY MESSAGE: We identified IspF gene through yellow-green leaf mutant 505ys in rice. OsIspF was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. On expression levels of genes in this mutant, OsIspF itself and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase were all up-regulated, however, among eight genes associated with photosynthesis, only psaA, psaN and psbA genes for three reaction center subunits of photosystem obviously changed. Isoprenoids are the most abundant natural compounds in all organisms, which originate from the basic five-carbon units isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, IPP and DMAPP are synthesized through two independent pathways, the mevalonic acid pathway in cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. The MEP pathway comprises seven enzymatic steps, in which IspF is the fifth enzyme. So far, no IspF gene has been identified in monocotyledonous plants. In this study, we isolated a leaf-color mutant, 505ys, in rice (Oryza sativa). The mutant displayed yellow-green leaf phenotype, reduced level of photosynthetic pigments, and arrested development of chloroplasts. By map-based cloning of this mutant, we identified OsIspF gene (LOC_Os02g45660) showing significant similarity to IspF gene of Arabidopsis, in which a missense mutation occurred in the mutant, resulting in an amino acid change in the encoded protein. OsIspF gene was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. Further, the mutant phenotype of 505ys was complemented by transformation with the wild-type OsIspF gene. Therefore, we successfully identified an IspF gene in monocotyledonous plants. In addition, real-time quantitative RT-PCR implied that a positive regulation could exist between the OsIspF gene and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase. At the same time, it also implied that the individual genes involved in the MEP pathway might differentially regulated expression levels of the genes associated with photosynthesis.


Asunto(s)
Mutación/genética , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Terpenos/metabolismo , Eritritol/análogos & derivados , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Hemiterpenos/metabolismo , Compuestos Organofosforados/metabolismo , Oryza/genética , Fenotipo , Enfermedades de las Plantas/genética , Proteínas de Plantas/fisiología , Fosfatos de Azúcar
18.
Plant Physiol Biochem ; 111: 1-9, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27875742

RESUMEN

Leaf-color mutants have been extensively studied in rice, and many corresponding genes have been identified up to now. However, leaf-color mutation mechanisms are diverse and still need further research through identification of novel genes. In the present paper, we isolated a leaf-color mutant, ys83, in rice (Oryza sativa). The mutant displayed a yellow-green leaf phenotype at seedling stage, and then slowly turned into light-green leaf from late tillering stage. In its yellow leaves, photosynthetic pigment contents significantly decreased and the chloroplast development was retarded. The mutant phenotype was controlled by a recessive mutation in a nuclear gene on the short arm of rice chromosome 2. Map-based cloning and sequencing analysis suggested that the candidate gene was YS83 (LOC_Os02g05890) encoding a protein containing 165 amino acid residues. Gene YS83 was expressed in a wide range of tissues, and its encoded protein was targeted to the chloroplast. In the mutant, a T-to-A substitution occurred in coding sequence of gene YS83, which caused a premature translation of its encoded product. By introduction of the wild-type gene, the ys83 mutant recovered to normal green-leaf phenotype. Taken together, we successfully identified a novel yellow-green leaf gene YS83. In addition, number of productive panicles per plant and number of spikelets per panicle only reduced by 6.7% and 7.6%, respectively, meanwhile its seed setting rate and 1000-grain weight (seed size) were not significantly affected in the mutant, so leaf-color mutant gene ys83 could be used as a trait marker gene in commercial hybrid rice production.


Asunto(s)
Mapeo Cromosómico , Genes de Plantas , Oryza/genética , Hojas de la Planta/genética , Clonación Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Sitios Genéticos , Marcadores Genéticos , Mutación/genética , Fenotipo , Fotosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Carácter Cuantitativo Heredable , Reacción en Cadena en Tiempo Real de la Polimerasa , Plantones/ultraestructura , Fracciones Subcelulares/metabolismo
19.
Mol Genet Genomics ; 292(2): 271-281, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27832344

RESUMEN

Low temperature may exert a negative impact on agronomical productivity. PsbR was known as the 10 kDa Photosystem II polypeptide. Although plant PsbR is thought to play important roles in photosynthesis, little is known about the contribution of plant PsbR to abiotic stress resistance. The expression patterns of three OsPsbR gene family members, OsPsbR1, OsPsbR2, and OsPsbR3, were characterized in rice 'Nipponbare'. Under normal condition, OsPsbR1 and OsPsbR3 showed tissue-specific expression, while the expression of OsPsbR2 could not be detected in all tested tissues. OsPsbR1 was upregulated in response to cold stress, and downregulated under drought, salt, or heat conditions. The upregulation of OsPsbR3 was observed under the treatment of ABA, and its downregulation was detected under drought or heat conditions. Upregulation of OsPsbR1 in rice resulted in significantly increased resistance to cold, but did not affect the yield of rice. Furthermore, after 8 h cold-stress treatment, the expression levels of three cold stress-induced marker genes were significantly higher in the overexpression lines L11 and L19 in comparison with the wild type. All these results suggest that OsPsbR1 may play key roles in photosynthesis and cold stress response and thus has the potential to improve cold stress tolerance of crops.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oryza/genética , Proteínas de Plantas/genética , Ácido Abscísico/farmacología , Frío , Productos Agrícolas/genética , Bases de Datos Genéticas , Sequías , Genes de Plantas , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Plantas Modificadas Genéticamente , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Estrés Fisiológico/genética , Regulación hacia Arriba
20.
Plant Sci ; 238: 127-34, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26259181

RESUMEN

Ferredoxins (Fds) are small iron-sulfur proteins that mediate electron transfer in a wide range of metabolic reactions. Besides Fds, there is a type of Fd-like proteins designated as FdC, which have conserved elements of Fds, but contain a significant C-terminal extension. So far, only two FdC genes of Arabidopsis (Arabidopsis thaliana) have been identified in higher plants and thus the functions of FdC proteins remain largely unknown. In this study, we isolated a yellow-green leaf mutant, 501ys, in rice (Oryza sativa). The mutant exhibited yellow-green leaf phenotype and reduced chlorophyll level. The phenotype of 501ys was caused by mutation of a gene on rice chromosome 3. Map-based cloning of this mutant resulted in identification of OsFdC2 gene (LOC_Os03g48040) showing high identity with Arabidopsis FdC2 gene (AT1G32550). OsFdC2 was expressed most abundantly in leaves and its encoded protein was targeted to the chloroplast. In 501ys mutant, a missense mutation was detected in DNA sequence of the gene, resulting in an amino acid change in the encoded protein. The mutant phenotype was rescued by introduction of the wild-type gene. Therefore, we successfully identified FdC2 gene via map-based cloning approach, and demonstrated that mutation of this gene caused yellow-green leaf phenotype in rice.


Asunto(s)
Ferredoxinas/genética , Genes de Plantas , Mutación/genética , Oryza/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/química , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Clonación Molecular , Ferredoxinas/química , Ferredoxinas/metabolismo , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Sitios Genéticos , Mutación INDEL/genética , Datos de Secuencia Molecular , Oryza/fisiología , Fenotipo , Fotosíntesis/genética , Mapeo Físico de Cromosoma , Pigmentos Biológicos/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/metabolismo , Transporte de Proteínas , Carácter Cuantitativo Heredable , Análisis de Secuencia de Proteína , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...